skip to main content


Search for: All records

Creators/Authors contains: "Niknam, Mohamad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The dynamics of viscoelastic fluids are governed by a memory function, essential yet challenging to compute, especially when diffusion faces boundary restrictions. We propose a computational method that captures memory effects by analyzing the time-correlation function of the pressure tensor, a viscosity indicator, through the Stokes–Einstein equation’s analytic continuation into the Laplace domain. We integrate this equation with molecular dynamics simulations to derive necessary parameters. Our approach computes nuclear magnetic resonance (NMR) line shapes using a generalized diffusion coefficient, accounting for temperature and confinement geometry. This method directly links the memory function with thermal transport parameters, facilitating accurate NMR signal computation for non-Markovian fluids in confined geometries.

     
    more » « less
    Free, publicly-accessible full text available January 14, 2025
  2. The temperature dependence of the nuclear free induction decay in the presence of a magnetic-field gradient was found to exhibit motional narrowing in gases upon heating, a behavior that is opposite to that observed in liquids. This has led to the revision of the theoretical framework to include a more detailed description of particle trajectories since decoherence mechanisms depend on histories. In the case of free diffusion and single components, the new model yields the correct temperature trends. The inclusion of boundaries in the current formalism is not straightforward. We present a hybrid SDE-MD (stochastic differential equation - molecular dynamics) approach whereby MD is used to compute an effective viscosity and the latter is fed to the SDE to predict the line shape. The theory is in agreement with the experiments. This two-scale approach, which bridges the gap between short (molecular collisions) and long (nuclear induction) timescales, paves the way for the modeling of complex environments with boundaries, mixtures of chemical species, and intermolecular potentials.

     
    more » « less
    Free, publicly-accessible full text available September 28, 2024
  3. Abstract

    Single-qubit gates are essential components of a universal quantum computer. Without selective addressing of individual qubits, scalable implementation of quantum algorithms is extremely challenging. When the qubits are discrete points or regions on a lattice, selectively addressing magnetic spin qubits at the nanoscale remains a challenge due to the difficulty of localizing and confining a classical divergence-free field to a small volume of space. Herein we propose a technique for addressing spin qubits using voltage-control of nanoscale magnetism, exemplified by the use of voltage control of magnetic anisotropy. We show that by tuning the frequency of the nanomagnet’s electric field drive to the Larmor frequency of the spins confined to a nanoscale volume, and by modulating the phase of the drive, single-qubit quantum gates with fidelities approaching those for fault-tolerant quantum computing can be implemented. Such single-qubit gate operations require only tens of femto-Joules per gate operation and have lossless, purely magnetic field control. Their physical realization is also straightforward using foundry manufacturing techniques.

     
    more » « less